
Journal of Research of the National Bureau of Standards Vol. 57, No. 1, July 1956 Research Paper 2687 

Mixed Path Ground Wave Propagation: 
1. Short Distances 

James R. Wait 

An expression is derived for the mutua l impedance between two short vertical antennas 
on a flat ear th with a s traight boundary separating two media of differing electrical constants . 
After making some approximations t ha t are valid at low and medium frequencies and where 
t he an tennas are not near t he boundary, the integral formula for the field is evaluated for a 
wide range of the parameters . The numerical results computed in this paper are shown to be 
in reasonably good agreement with experiment. Finally, the effect of t h e obliqueness of t he 
boundary is considered by a refinement of the s tat ionary phase evaluation of the integrals. 

1. Introduction 

Considerable interest has been shown recently in the propagation of ground waves over sin 
in homogeneous conducting earth. For many purposes, such as estimating coverage of broad­
cast transmitters, it is usually sufficient to assign an equivalent conductivity to the path. A 
simple and effective method for estimating this equivalent value from a conductivity profile of 
the path has recently been proposed by Suda [l].1 Another technique described by K^rke [2], 
which is similar, has been called the equivalent-distance method and is also simple to apply-
The best known method, however, is due to Millington [3]. Although semiempirical it does 
appear to be valid for a wide range of frequencies and ground constants. I t also predicts the 
recovery effect that occurs when the wave passes over a boundary from an area of poor 
conductivity to one of good conductivity. Millington does not provide a theoretical justification 
for his method, although he does indicate that his formulas for high frequencies are compatible 
with the expected behavior of the height-gain functions over the media on both sides of the 
boundary. Clemmow [4] in an elegant dissertation obtains a rigorous solution for a line source 
on flat earth parallel to a boundary separating two media. He makes a limited comparison of 
his formula with Millington's method, and shows that the agreement is good. In a more 
recent theoretical approach to the subject, Bremmer [5] formulates the problem in terms of an 
integral equation, which he solves by operational methods. After considerable manipulation he 
succeeds in showing that his result is mathematically equivalent to that of Clemmow. 
Bremmer considers several limiting cases and also establishes the validity of Millington's 
formulas at high frequencies. 

I t is the purpose of the present paper to extend Bremmer's result, with particular attention 
being paid to the phenomena at low and medium radiofrequencies where it does not seem 
possible to obtain convenient series expansions for the field by the Bremmer method. For 
the sake of completeness, the problem is reformulated in terms of mutual impedance between 
two antennas located on a flat earth, with a straight boundary separating two homogeneous 
media. In this case there is no doubt as to whether the reciprocity theorem is satisfied or not. 
The line joining the two antennas makes some angle with the boundary that should not be 
near zero. An integral equation is obtained for the field which is similar to one formulated 
by Feinberg [6] for propagation over a rough ground. In the present paper, the integral 
equation is solved by numerical means for a range of parameters that are appropriate for short 
distances at low and medium frequencies. I t is intended to extend the calculations in a later 
paper to situations where the earth's curvature must be considered; that is, for distances in 
miles greater than about 50\^, where X is the wavelength in meters. 

1 Figures in brackets indicate the literature references at the end of this paper. 
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2. Formulation 

The surface of the earth is considered to be flat and defined by z=0 in a simple cartesian 
coordinate system (x,y,z). Points above the earth correspond to positive values of z. The 
earth medium to the left of a boundary line defined by y=x tan 0, as indicated in figure 1, has 
a conductivity cr and dielectric constant e. The earth medium for points to the right of the 
boundary line has a conductivity of &i and dielectric constant ei. Short hertzian dipole antennas 
are located at the points A and B, which can be located anywhere along the x axis just above 
the surface of the ground at 2 = 0 . 

I t is now assumed that a c u r r e n t ^ applied at the terminals of antenna A would produce 
electric and magnetic fields Ea and Ha for the case when the earth media were homogeneous 
with electrical constants a and e. A time factor exp(io>t) is implied. The mutual impedance 
between antennas A and B for this homogeneous case is denoted as Zab. When the earth becomes 
inhomogeneous in the manner described above, the fields of antenna A with the same current 
Ia become E'a and H'a, and the mutual impedance becomes Z'ah. I t is convenient to regard the 
change from Z'ab to Zab as a consequence of the changes of the currents within the earth when 
it is transformed from a homogeneous to an_inhomogeneous state. These currents will result 
in electric and magnetic fields Er

a—Ea and H'a—Ha and a voltage Ia{Zab—Z'ab) at the terminals 
of antenna B. A current Ib is now considered to be applied at terminals of antenna B, and 
the resulting electric and magnetic fields are Eb and Hb over the homogeneous earth of con­
stants a and e. I t then follows from Ballentine's "corollary I " of the electromagnetic reci­
procity theorem [7,8] that 

Z-~Z^=YJbj fsiEbXm-Kx'Hb}zdxdy, * . (1) 

where the integration extends over the whole ground plane S, and the subscript z indicates 
that the z or normal component of vector products is taken. 

A simplification is now made by introducing the concept of surface impedance [6,8], that 
is, the tangential electric and magnetic fields on the surface of the earth are assumed to be 
related by a complex constant of proportionality. More specifically, 

Ex~ — r)Hy j 
Y (2) 

Ev~rffx J 

where rj, the surface impedance, is assumed to be equal to the value obtained for a plane wave 
at grazing incidence on the flat earth. I t is given by 

, = 1 2 0 x ^ [ l + g ] M , (3) 

where j3=27r/wavelength, and a=(ia^—e/jL0)2y/2, with /z=47rX10"7. A subscript 1 is to be 
added to r\ when the electric constants are ci and ei. 

Equation (1) can now be written 

IaIbAZ=(rj-m)jjs (H'afHbt)dxdy, (4> 

where AZ=Z'ab—Zab is the change of the mutual impedance from the situation of the homo­
geneous earth of surface impedance rj to the inhomogeneous model indicated in figure 1. The 
quantity Hbt is the tangential magnetic field of the antenna B over the homogeneous earth, 
and Hat is the tangential magnetic field of the antenna A over the inhomogeneous earth. 

2 



y 

F I G U R E 1. Schematic diagram of antennas A and B on a fiat earth with a straight bound­
ary separating two media with different conductivities. 

The integration now extends over the surface S0 to the right of the boundary line. Since 
Hat is not actually known, eq (4) is actually a surface integral equation formulation of the 
problem. Before attempting to solve it, a simplification can be made if the principle of sta­
tionary phase is utilized. 

Letting the hertzian antenna at B have an effective height hb, the tangential magnetic 
field at P, a distance r from B, considering the earth as homogeneous and flat, is given by 

Wbt=W£> e-w ( l + ^ ) F(r, v)(i,xZ), (5) 

where F(rrrj) is Sommerfeld's ground-wave attenuation factor defined by 

F(r,>n)=l-i2py>e-p f e~a2da, (6) 

where 

is the numerical^ distance. Equation (6) is not exact, being an approximation valid for 
02<C|«|2. ir and iz are unit vectors in the directions of increasing r and z, respectively. The 
function F(r,rj) has been treated numerically by Norton [9] and others. The tangential mag­
netic field Hat at a distance R from A is of the form 

m ' = w e~m 0 + i k ) F'(R'v' "i} {TsXli)' (7) 

where F'(R,rj,r)i) is some function of R, rj, and rji, and can be expected to be slowly varying 
compared to e~ipB. iR is a unit vector in the direction of increasing R. 
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Using eq (5) and (7) and denoting the angle between the vectors ir and iR as 5, it follows that 
the expression for the mutual increment AZ can be written 

AZ=-(v-r1l) ^ jjs
 e ^ ^ ( l + - L ) ( l + ^ ) F(r,rj)XF'(r, v,m) cos 8jxdy, (8) 

' < s 0 

where 
r=[(r0+z)2+2/2]1/2and 

R=[(Ro-xy+y^. 

The major contribution to the integrand occurs when the phase of the exponential term is 
nearly constant, since the others are relatively slowly varying. With this in mind, the 
exponent is expanded in a powers series in y2 as follows: 

r+R^r0+R0+t [(_!_)+(_!_)] for Ro>x>0 

r+R^r0-R0+2X+y^[(-l-)+(-^)] for X>R0, (9) 

and 

where terms in y4, y6, etc., are neglected. A further approximation to the integrand in eq (8) 
is to replace (l + l/ij8r) and (1 + 1/ipR) by unity. This will be justified if the antenna A or B 
is not near the boundary (i. e., j3J?0 and j8r0^>l). This is essentially equivalent to stating 
that the effect of the induction field of the antennas is not considered so far as the boundary 
is concerned. 

The integral expression for AZ now has the following approximate form: 

where 
(2TT)2 (r0+R0f Jx=0 (r0+x)(R0—x) [_J_«, ^ J 

g r i?o+r0 i 
2L(ro+»)( f io-x)J 

The integration over a? only extends from 0 to Ro, because the contribution from the integrand 
for x^>Ro is negligible due to the presence of the rapidly varying function e~mx. 

3. Numerical Solution 

The mutual impedance Z between the two short antennas A and B for the homogeneous 
ground of electrical constants <r and e is given by 

y_ hahifiu 
~2T(r0+R{ 3 .-(W fM-K.4 [ i+js^-^d^} (n> 

I t is now convenient to express the mutual impedance Z ' between the antennas on the inhomo-
geneous ground as follows: 



where F' is the unknown attenuation function. The latter bracketed term can be replaced by 
unity because fi(r0-\-R0) is large compared to 1. Employing eq (10), (11) and (12), it follows 
that 

TPK i r> \ EY i D \ • / \( &A\ fRoF(ro+X,ri)F'(R0—X,ri1,rj)dx , . 
F'(r+R0>v,vO^F(r0+Ra,r,)^Hv-m)^))o [(ro+x)(Bo-x)]i ' ( 1 3 ) 

This is an integral equation for F'. I t is immediately apparent when :r<0 such that A and B 
are to the left of the boundary 

F'iro+RoM^Firo+Ro^). 

In other words, subject to our stationary phase approximation, the attenuation function Ff 

between A and B, when they are located on one side of the boundary, is characteristic only of 
the electrical constants a and e of the homogeneous ground between them. For exactly the 
same reason, the function F'(rQ-\-x,7i,nd, where it occurs in the integrand of equation, for the 
general case of # > 0 , can be replaced by Firo+x^), which is characteristic of propagation 
from A to the point a;(>0) over a homogeneous ground of electrical constants ax and e\. 

After a change of variable, the final expression for F' can be written in dimensionless form? 
yielding 

r-fw-i (a)Vvg) r ' * ? * * ^ ' * a* 
V71"/ JO •y/pipo — Kp) 

wi th 2 

J» 00 

e~°2da 

\120TTJ 

and 

^ _ ip(ro+Ro) 
Po— ^ 

K=°4^ and V=-
a-\-icoe R0-{-ro 

The above expression for Ff is then given in terms of the attenuation function F(p0), charac­
teristic of propagation between A and B on a homogeneous ground, and a correction term that 
accounts iov the change of the electrical constants of the ground to the right of the boundary. 
I t should be noted that p0 is the "numerical distance" between A and B with regard to the earth 
medium to the left of the boundary, whereas p0V/K is the numerical distance between the 
boundary to the point B with regard to the earth medium to the right of the boundary. Un­
fortunately this expression, which involves an integration over products of error functions, is 
not readily expressible in closed form. However, the integral can be approximated in certain 
limiting cases. For example, when p'Q(l — V) and p0V/K are small compared to 1, the power 
series expansion for the functions F{p) and F(p0—Kp) can be employed. This has the form 

F(p)=l-i(TpyA-2p+i^Tp^± . (15) 

I t then follows without difficulty that 

F>=F(P0)+2i(^J(l--j-) tan- ( ^ - ^ ( l - V ^ (i_Vi=F)+(£)*], (16) 

i For large distances, the function F must be modified to .account for earth curvature. This will be considered in section 2. 
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plus terms in p^2, pi, etc. Another special case is when p0 is large compared to 1, so that only 
the leading term in the asymptotic expansion of F(p0—Kp) need be considered; and furthermore, 
V is assumed to be small compared to unity. In this instance 

F(po-Kp) 1 _ 1 
(pQ-Kp)y— 2(p0-Kp)y— 2p0

3/2 

The power series formula for F(p) is then employed, yielding, after integrating term by term: 

F{poT 
2 l ( l - V g ) [ y2_i^wp1_2p3f l y ? 2 4 pt ijirpl S p\2 "I ,17v 

where pi=p0V/K. 
There are probably other limiting cases which will enable the integration with respect 

to p to be effected; however, it is believed that for application to low and medium radiofre-
quencies the values of p0 are in general neither large nor small compared to one. With this 
in mind, it is considered desirable to evaluate F' by a numerical integration for a range of 
p0, V, and K. I t should be noted that, for the general case, p0 and K are complex so there are 
actually five parameters to consider for the two-media problem. In this paper, attention 
will be restricted to frequencies where the displacement currents in the ground can be neglected. 
That is, the ratios eco/a and eico/ci are assumed to be small compared to unity, therefore p0 

— ir[(R0+ro)/\] (eo«/(r) a r jd K(=o-1/a) are real quantities. This is usually justified for frequen­
cies less than 1,000 kc for typical ground constants [10]. 

Employing the numerical values of the function F(p) and F(p0—Kp). the integral in eq 
(14) is evaluated by a graphical method. The function F'(p0, V,K) is then plotted*as a func­
tion of p0 from 0.1 to 5 for various values of K and V in figures 2 to 11. I t is believed that 
the results plotted in this form can be adapted to a large number of practical situations. The 
curves are not shown beyond pQ=5, since this usually corresponds to higher frequencies where 
displacement currents are nonnegligible. 

I t is of considerable interest at this stage to compare these numerical results with those 
computed using Millington's method [3]. His empirical formula for Ff(p0, V,K) in the nota­
tion of the present paper would read 

F>(r> V K\ TF(v !K)F(V ) nPoa-V)}F(p0V/K)Y* 

Values computed from this formula for the cases K=2 and K=*> are indicated by O and 
# , respectively, on figures 2 to 11. The agreement is quite reasonable, and therefore further 
support is given to the validity of the Millington method, which has been known to predict 
correctly, within 1 db or so, the attenuation over certain mixed paths. I t is believed, however, 
that differences are not of sufficiently small order to be neglected if fairly precise values of the 
fields in amplitude and phase are required. 
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F I G U R E 12. Field strength versus distance curves for various mixed paths. 

The conductivity in millimhos per meter to the left and right of the boundary is shown on each curve. The experimental results were communicated to 
the author privately by P. A. Field, formerly of the Canadian Broadcasting Corporation. , From parametric curves; •, computed by Milling-
ton method; Cexperimental (P. A. Field); , curve, assuming homogeneous ground throughout (V=K=0). 

4. An Application 

To illustrate the application of these parametric curves, the field strength in millivolts per 
meter is shown plotted in figure 12 as a function of the distance (=r 0 +i? 0 ) in miles for five 
different mixed paths. The curves are normalized so that the field strength at 1 mile is 
100 mv/m. Experimental values supplied by P. A. Field are also indicated. The curves 
calculated by the Millington method are also shown in figure 12. The conductivities on the 
near and far sides of the boundary are indicated on the figures and are expressed in millimhos 
per meter. The agreement between the computed and experimental results is quite good. 
For these short distances the curves calculated by the Millington method fell slightly below 
the curves computed from the integral formula. In view of the uncertainty in the exact 
physical features of the ground, the difference between the two methods of calculation hardly 
seems significant for these situations. I t is interesting, however, to note that the Millington 
method in four out of five cases underestimates the recovery effect to a greater degree than the 
integral method. The dotted curves in figure 12 correspond to the case where the ground is 
homogeneous throughout, and has the conductivity of the earth on the transmitter side of the 
boundary. The difference between the solid and dotted curves is a measure of the recovery 
effect, and it is apparent that the theory indicates a gradual transition at the boundary and 
does not show any sudden or transient features at the boundary. I t would seem from the 
experimental results that there is actually some type of disturbance at the boundary between 
the two media which is not predicted by the theory. I t is believed that a more rigorous 
evaluation of the integral equation is necessary to describe the nature of the field near the 
boundary. 

5. The Refraction Effect 

Although this problem was formulated for the mutual impedance between antennas A and 
B oh either side of an oblique boundary, the consequent path of stationary phase did not depend 
on the inclination angle 6. In other words, any refraction effects were neglected. I t is the 
purpose of this section to revise the stationary phase evaluation of the integral to account 
for the changes of phase velocity between the two media. I t is admitted that the procedure 
is not rigorous and is based on certain physical ideas that have their roots in geometrical optics. 

With regard to figure 1, the direct ray AOB between the antennas would represent the path 
of stationary phase if refraction effects were neglected. Of course, if the boundary was at a 
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right angle to AOB (i. e., 0=90°), it would be rigorously justified to assume AOB was the path 
of the stationary phase. I t can be expected, however, that for the oblique boundary the 
path of stationary phase would be along a line APB, where P was displaced along the boundary 
from O by an amount q. Furthermore, it can be anticipated that q would be small compared 
to r0 and RQ. The location of the point P can be best obtained by regarding q as a variable 
quantity in order to find when the total phase along APB is stationary or when it is a minimum. 
This is essentially a statement of Fermat's principle in optics. The difference between the 
phase along the paths AOB and APB is now considered to be due to two factors: (1) the actual 
increase of path length, and (2) the change of the ratios of the path lengths for the two respec­
tive media. For example, if the left-hand medium is more poorly conducting than the right-
hand medium (i. e., i £ > l ) , the phase velocity is relatively less to the left of the boundary, so 
that AP is less than AO. More explicitly, the total phase <f> over the path APB can be written 

^q)=^K+Ro)+<l>W,Kypo) (19) 
where 

r = [rl~\-q2—2r0q cos0]H 

Ro=[Rl+q2+2R0qcos6]y> 

A A 

The function <j>(V,K,p0) in the above expression is taken to be of the same form as the function 
<t>(V,K,p0) previously computed. The general scheme is then to vary q to find wh#re <£(g) 
is stationary. For the present purpose, however, it is convenient to make some further 
approximations utilizing the fact that q is small. The phase function then becomes 

$ ( 2 ) ^ ( r 0 + B o ) [ l + ^ ( | ) 2 y—y^'itK,po), (20) 

kThere 

and 

V~V+2Gos6, d=r0+R0, 

[\ . sin2 6 /q\* 1 "I 

The terms containing higher powers in (qjd) have been neglected and, in fact, in the expression 
for po, the term containing (q/d)2 can be also dropped, since <l>'(V,Kfpo) is a relatively slowly 
varying function of pQ. I t is now convenient to express # ' (F ) as a Taylor expansion, as follows: 

Because q is small compared to r0+i?0 , only the first term or two of the expansion are significant. 
The phase function now becomes 

$(2)^^(ro+Bo)+^(F,^^„)-^^5(y)+^i^_x^0)2, (22) 

where 8(V) = — d<t>(V)/dV is essentially a positive quantity. The right-hand side of the 
equation is a quadratic in q and has a minimum or stationary value when 

g_qo_OQ8 0 8(V)V(l-V)* (9o, 
d d 2sm20T(ro+Ro) ' ' 
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This value of g, namely, g0, which makes 3>(g) stationary, is then a measure of the deviation of 
the direction of the phase of the ground wave as it crosses the boundary. The appropriate 
values of 8(V) can be obtained directly from the parametric curves of (t>'(p0,V,K). Actually, 
it is a little more meaningful to consider the angles 8 and 5i, which are the angles OBP and OAP 
in figure 1. These can be ca]led bearing errors, as they are a measure of the change of direction 
of the phase front relative to a direct unimpeded wave between A and B. In terms of g0, the 
bearing errors, expressed in degrees, are given by 

8c^. 
go 1 • . 1 8 0 

r0+R0(l-V)SmU TT 
and 

. _ go 1 • a 180 
r0+Ro V T 

Employing typical values of the parameters and letting K = <» ? values of 8 and 8X were com­
puted and are: 

V 

0.2 
.2 
. 2 
.2 
.5 
. 5 

.5 

. 5 

.8 

.8 

.8 

.8 

0.01 
.01 
.001 
.001 
.01 
.01 

.001 

. 001 

.01 

.01 

.001 

.001 

ro + Ro 
X 

50 
100 
50 
100 
50 
100 

50 
100 
50 
100 
50 
100 

e= 

8 

0.06 
.03 
.02 
.01 
. 10 
.06 

.03 

.02 

.26 

. 16 

.08 

.06 

45° 

«i 

0.24 
. 14 
.08 
.06 
. 10 
.06 

.03 

.02 

.06 

.04 

.02 

.02 

e= 

8 

0.03 
.02 
.01 
.01 
.06 
.03 

.02 

.01 

. 17 

.09 

.05 

.04 

60° 

«i 

0. 14 
.08 
.04 
.03 
.06 
.03 

. 02 

.01 

.04 

.02 

.01 

.01 

I t might seem surprising at first glance that these values are so small. This is as should 
be expected, however, because the absolute phase velocities of the ground wave over the two 
media differ only by a fraction of one percent [10J. I t is noted that the bearing errors are 
largest when the antenna is near the boundary, and where the separation between antennas 
A and B is 50 wavelengths or less. Of course, as the obliqueness of the boundary becomes 
more noticeable (i. e., 0<45°) the calculated values of 8 and 5i would be larger. One should 
be cautious, however, in attempting to apply this method to the case where the boundary 
makes a small angle with the line AB between the antennas. In such an instance the approxi­
mation used in evaluating the basic integral by a stationary phase principle becomes invalid. 

6. Conclusion 

The results obtained in this paper provide a theoretical check of the Millington semi-
empirical method of calculating the amplitude and phase of a wave crossing a boundary sepa­
rating two media. The parametric curves presented here should be convenient for making 
predictions for propagation along a two-media path at low and medium frequencies. I t is 
also indicated that the refraction effects for a wave crossing the boundary obliquely are very 
small. 

I record my thanks to Loris Perry, who carried out most of the computations. 
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